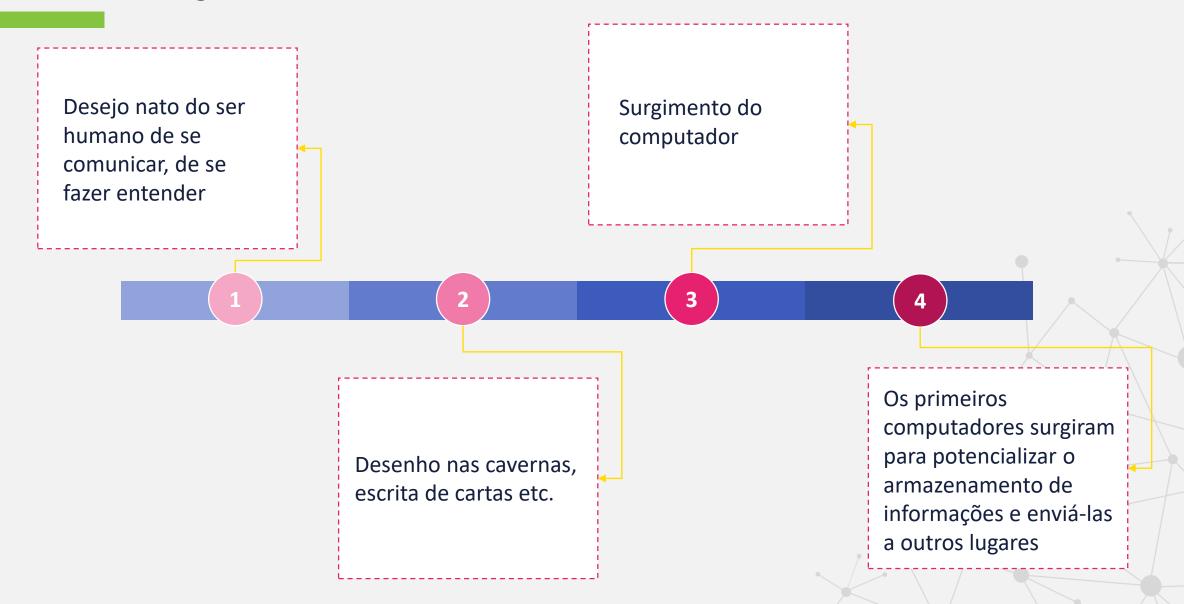


BNCC e a CULTURA DIGITAL

CENTRO DE INOVAÇÃO PARA A EDUCAÇÃO BRASILEIR A

QUEM SOMOS?


O CIEB – Centro de Inovação para a Educação Brasileira é uma organização sem fins lucrativos criada para promover a cultura de inovação e o uso de tecnologia para promover a qualidade e a equidade nas redes públicas de ensino.

1

O surgimento da cultura digital na educação

O AVANÇO DA TECNOLOGIA

AVANÇO DA TECNOLOGIA

Possibilidades de uso dos recursos digitais

Revolução das mídias da cultura de uso digital

AVANÇO DA TECNOLOGIA

Locomover-se

Movimentar a conta bancária

Comprar produtos

Verificar multas de trânsito

Fazer um curso on-line

Estar nesse contexto requer uma participação ativa

CULTURA DIGITAL

ALFABETIZAÇÃO DIGITAL

Conhecer, compreender e fazer uso básico e instrumental de tais recursos

LETRAMENTO DIGITAL

Entender os processos de uso e de produção básica das TDICs. Conseguir analisar, avaliar, aplicar e criar conteúdos ou recursos utilizando tecnologia

FLUÊNCIA DIGITAL

Incorporar de modo natural a tecnologia aos processos de ensino e de aprendizagem

Dessa forma, se fortalece uma cultura digital, na qual as TDICs passam a fazer parte do cotidiano

CULTURA DIGITAL

Estimular as transformações tecnológicas

Adaptar e melhorar o que é preciso e descartar o que não é

BNCC e Cultura Digital

É um anseio da própria comunidade escolar participar desse ciclo de atualizações e desenvolver novas metodologias de ensino e aprendizagem

BNCC E TECNOLOGIA

COMPETÊNCIA GERAL #5

Compreender, utilizar e **CRIAR tecnologias digitais** de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, **produzir** conhecimentos, **resolver** problemas e exercer protagonismo e autoria na vida pessoal e coletiva.

BNCC E TECNOLOGIA

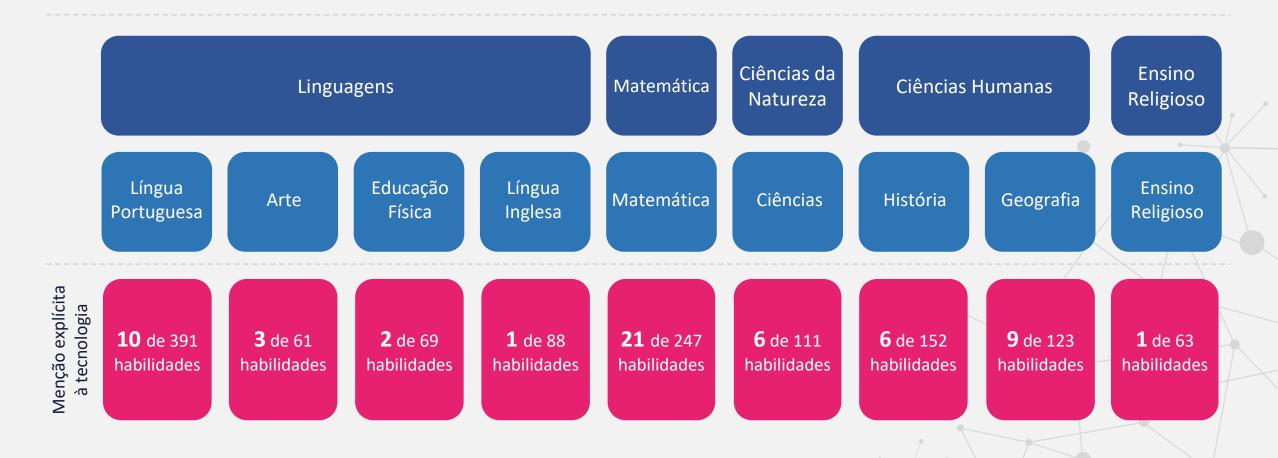
COMPETÊNCIAS GERAIS #1 e #2

#1

Valorizar e utilizar os conhecimentos historicamente construídos sobre o mundo físico, social, cultural e digital para entender e explicar a realidade, continuar aprendendo e colaborar para a construção de uma sociedade justa, democrática e inclusiva.

#2

Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade, para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas.


BNCC ESTRUTURA

Competências Gerais da Base Nacional Curricular Comum

BNCC E TECNOLOGIA

Competências Gerais da Base Nacional Curricular Comum

TOTAL DE HABILIDADES - TECNOLOGIA

~10% das habilidades

128 habilidades com menção explícita à tecnologia

http://www.cieb.net.br/cieb-notas-tecnicas/

Tecnologia em documentos curriculares de outros países

Como a tecnologia aparece em outros países

Comparação entre nomenclatura, modo de implantação e obrigatoriedade da disciplina de computação em cada país.

Países	Nomenclatura	Implantação	Alfabetização até EF I	12 a 18 anos
Austrália	Tecnologias Digitais	Disciplina própria e integrada com outras disciplinas	Obrigatória	Obrigatória
Grã-Bretanha	Computação	Substituindo disciplina já existente	Obrigatória	-
Estônia	Programação (Tecnologia e inovação)	Integrada com outras disciplinas	Obrigatória	Obrigatória
Finlândia	Programação (Competência digital)	Integrada com outras disciplinas	Obrigatória	-
Nova Zelândia	Programação e Ciência da Computação	Disciplina própria	-	Opcional
Noruega	Programação	Disciplina própria	-	Opcional
Suécia	Programação e Competência Digital	Integrada com outras disciplinas	Obrigatória	Opcional
Coréia do Sul	Informática	Disciplina própria	Obrigatória	Opcional
Polônia	Ciência da Computação	Disciplina própria	Obrigatória	Obrigatória
Estados Unidos	Ciência da Computação	Disciplina própria	-	Opcional

Fonte: Heintz et al (2016), tradução CIEB.

Finlândia: Base Nacional Comum Curricular (2014)

- A tecnologia é uma das sete competências transversais que devem ser incluídas em todas as áreas de conhecimento nos níveis iniciais da educação básica.
- A Base Nacional inclui "pensamento algorítmico" e "programação" desde o 1º ano.

As competências de TIC são divididas em 4 áreas:

1

Princípios, conceitos e lógica de uso das TICs 2

Uso seguro e responsável das TICs

3

Uso das TICs para gerenciamento de informações, pesquisa e trabalhos criativos 4

Experiência e prática no uso de TICs para interação e colaboração

Austrália

Principais características do ensino de TIC

Tecnologia como tema transversal e uma área de conhecimento

Currículo desenvolvido com conteúdo de aprendizagem específico e obrigatório para cada período de 2 anos até o 8º ano; Para o 9º e 10º ano conteúdo sugerido como matéria eletiva

Áreas

Contexto

Dividida em duas subáreas: "Digital Technologies" e "Design and Technologies"

Avaliação

National Assessment Program – ICT Literacy mede a habilidade dos alunos com TIC no 6º e 10º ano desde 2005

Estrutura e habilidades do currículo de TIC

Chile

Contexto

Tecnologia como uma área de conhecimento

Subáreas

Dois eixos:

- 1° ao 6° ano "Diseñar, hacer y probar" e "Tecnologías de la información y la comunicación"
- 7° e 8° ano "Resolución de problemas tecnológicos" e "Tecnología, ambiente y sociedade"

Avaliação

SIMCE TIC é uma prova nacional que mede a habilidade dos alunos em TIC no 2º ano do ensino médio, a partir de 2011

Inglaterra

Pioneiro na Comunidade Europeia na inclusão de computação e programação como conteúdos compulsórios desde do 1º ano do ensino básico

Computing (Computação):

Uma educação de qualidade em computação permite que alunos utilizem o pensamento computacional e a criatividade para compreender e impactar o mundo, tanto natural como artificial. A parte central é ciência da computação, por meio da qual são ensinados os princípios da computação e informação, como sistemas digitais funcionam e como utilizar esse conhecimento para a programação

Ciência da Computação

Tecnologia da Informação

Alfabetização Digital

Design and Technology (Design e Tecnologia):

Utilizando criatividade e inovação, alunos desenham e fazem produtos que resolvem problemas reais e relevantes em contextos variados, considerando suas necessidades e dos outros, seus desejos e valores. Eles adquirem conhecimento e se utilizam de outras disciplinas como matemática, ciências, engenharia, computação e arte

Desenhar Fazer Avaliar Conhecimento técnico

Estados Unidos (Common Core)

English Language Arts (Língua Inglesa)

Leitura K-12

(10 parâmetros)

- (7) Integrar e avaliar conteúdos apresentados em diversos formatos e mídias, incluindo visualmente e quantitativamente, bem como em palavras;
- (9) Analisar como dois ou mais textos de diferentes fontes abordam temas ou tópicos similares de forma a construir conhecimento ou para comparar a abordagem dos autores.

Escrita K-12

(10 parâmetros)

- (6) Usar a tecnologia, incluindo a internet para produzir e publicar textos e para interagir e colaborar com outros;
- (8) Obter informações relevantes de múltiplas fontes físicas e digitais, avaliando suas a credibilidade e acurácia de cada fonte, e integrar a informação evitando o plágio.

Oralidade K-12

(6 parâmetros)

- (2) Integrar e avaliar informações apresentadas em diversas mídias e formatos, incluindo visualmente, quantitativamente e oralmente;
- (5) Fazer uso estratégico das mídias digitais e formas de visualização de dados para expressar informações e aumentar o entendimento de apresentações.

Linguagem K-12

(6 parâmetros)

 (2) Consultar materiais de referências gerais e especializados, físicos ou digitais, para encontrar a pronúncia de uma palavra ou determinar seu significado preciso.

A TECNOLOGIA APARECE EM QUATRO CONTEXTOS DISTINTOS

Tecnologia como conteúdo (mídia):

Foco na compreensão, interpretação e integração de diversos conteúdos digitais (vídeos, áudios, inforgráficos, GIFs, tweets, posts, memes, etc).

Tecnologia como fonte de pesquisa:

Obtenção de informações relevantes em fontes digitais (repositórios, buscadores, etc), com foco na avaliação crítica da credibilidade e acurácia de fontes.

Tecnologia como ferramenta de autoria:

Produção de conteúdos (apresentações, visualização de dados, textos, etc), pelos alunos, para expressar informações com o uso de ferramentas digitais.

Tecnologia como ferramenta de interação:

Utilização da internet para colaboração (ferramentas online em nuvem, redes sociais, etc) e comunicação.

Estados Unidos (K-12 Computer Science Framework)

Conceitos

- Sistemas de computação
- Redes e Internet
- Dados e Análise
- Algoritmos e programação
- Impactos da computação

Práticas

- Promover um cultura de computação inclusiva
- Colaboração em torno da computação
- 3. Reconhecer e definir problemas computacionais
- 4. Desenvolver e utilizar abstrações
- 5. Criar artefatos computacionais
- 6. Testar e aperfeiçoar artefatos computacionais
- 7. Comunicação sobre computação

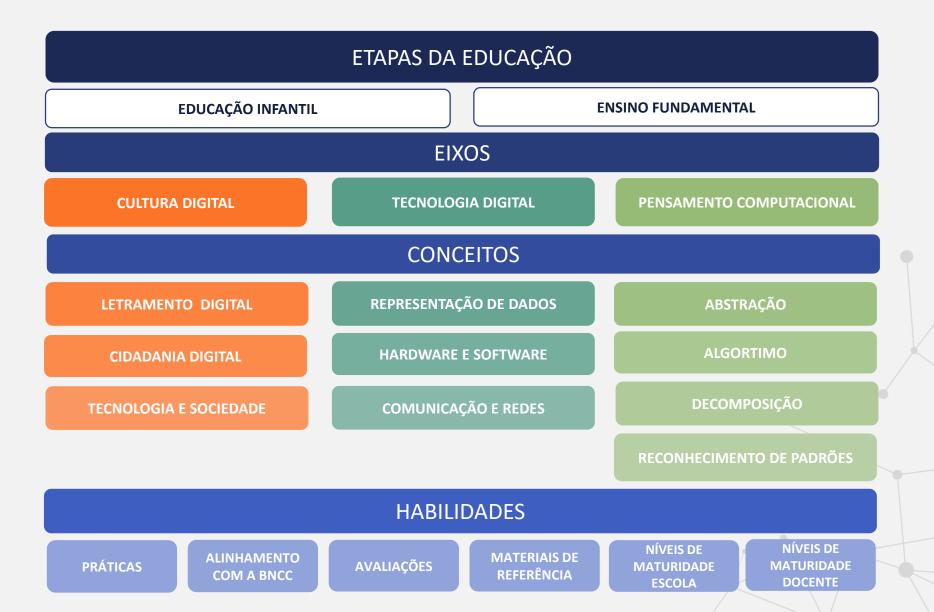
O que aprendemos até agora?

- Computação é uma competência fundamental para cidadãos do século XXI.
- Diversos países trabalham o tema ainda que de formas diferentes.
- 3 Há equilíbrio entre aprendizados conceituais e práticas (design).
- 4 O tema é trabalhado desde os anos iniciais.
- É importante trabalhar conteúdos como cultura digital, pensamento computacional, mundo digital e também o uso ético, responsável e cidadão das tecnologias.

Vocês, futuros professores e profissionais da educação, tendo consciência dos avanços da tecnologia e da importância na educação, podem ajudar a promover uma TRANSFORMAÇÃO no ensino brasileiro.

Qual o papel do CIEB nesse contexto?

PRINCIPAL OBJETIVO


Oferecer diretrizes e orientações para apoiar redes de ensino e escolas a incluir os temas tecnologia e computação em suas propostas curriculares

ETAPAS DE ENSINO

Atende da Educação Infantil ao Ensino Fundamental II

ALINHAMENTO COM A BASE

Está alinhado às competências gerais e às habilidades da BNCC

TRANSVERSAL

Desenvolver as temáticas de tecnologia e computação de modo transversal aos demais temas abordados na BNCC, sem criar um novo componente curricular

ESPECÍFICO

Desenvolver uma área de conhecimento específica ou um componente curricular específico

http://curriculo.cieb.net.br/

DÚVIDAS? SUGESTÕES?

CENTRO DE INOVAÇÃO PARA A EDUCAÇÃO BRASILEIRA INOVAÇÃO E CONEXÕES

QUE TRANSFORMAM

A EDUCAÇÃO

contato@cieb.net.br (11) 3031.7899